06ES32

USN

Third Semester B.E. Degree Examination, June-July 2009 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least Two questions from each part.

2. Make suitable assumptions if necessary.

PART - A

a. With respect to a semiconductor diode, explain the following:

i) Reverse Recovery time

ii) Diffusion capacitance.

(06 Marks)

b. How does a clamping circuit differ from a clipping circuit? For the diode clipping circuit shown in Fig.1(b), draw the input and output waveforms for i) $R = 100 \Omega$; ii) $R = 1k\Omega$; iii) $R = 10k\Omega$ for $V_i = 20$ Sinwt and $V_R = 10V$. Assume $Rf = 100\Omega$, $Rr = \infty$ and $V_r = 0$.

(08 Marks)

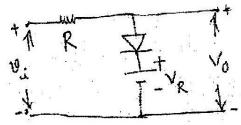


Fig.1(b).

Draw the circuit diagram of a full wave rectifier with capacitor filter. The circuit uses a capacitor of 1000 µF and provides a d.c. load current of 500 mA at 2% ripple. Assume f = 50Hz. Calculate i) D.C. output voltage; ii) Peak rectified voltage and % regulation.

(06 Marks)

- a. What is meant by transistor biasing? Compare different biasing methods used for transistor biasing with respect to stability. (05 Marks)
 - b. Find the operating point for the voltage divider bias circuit with $\beta=80$ and $V_{BE}=0.6V$. Find the new operating point when β changes to 100 and V_{BE} changes to 0.25. Given $V_{cc}=15V$, $R_{I}=100k\Omega$, $R_{2}=18k\Omega$, $R_{c}=4.7k\Omega$, $R_{E}=1k\Omega$. (07 Marks)
 - c. With the help of a neat circuit diagram, explain the use of transistor as an inverter. (08 Marks)
- 3 a. What are the advantages of using hybrid model to represent the transistor? Explain how h-parameters can be obtained from the static characteristics of the transistor. (06 Marks)
 - b. For the Emitter follower circuit, derive expressions for A_V, A_I, R_{in} and R_o of an emitter follower.

 (08 Marks)
 - c. Compare the characteristics of CE, CC, CB configurations. A CE amplifier uses $R_L = 200\Omega$. The h-parameters are $h_{ie} = 1100\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 22 \mu A/V$. Calculate i) Current gain; ii) Input impedance (06 Marks)
- a. What is Miller effect? Draw the high frequency transistor a.c. equivalent circuit (π-Model) and explain the significance of each component in the model.
 (08 Marks)
 - b. What are the factors that influence the low frequency and high frequency response of a CE-BJT amplifier? (06 Marks)
 - c. Calculate the overall lower 3dB and upper 3dB frequencies for a 3 stage amplifier having an individual lower 3dB frequency of 30 Hz and upper 3dB frequency of 2.5 MHz. (06 Marks)

- Why do we cascade amplifiers? State the various methods of cascading transistor amplifiers. A given amplifier arrangement has the following voltage gains. $Av_1 = 10$. $Av_2 = 20$ and $Av_3 = 40$. What is the overall voltage gain? Also express each gain in dB and determine the total voltage gain in dB. (08 Marks)
 - b. Explain the operation and characteristics of cascade and Darlington pair connections.

(04 Marks)

- c. Explain the concept of feedback amplifier. If an amplifier has a bandwidth of 200 kHz and a voltage gain of 80, what will be the new bandwidth and gain if a negative feedback of 5% is introduced?

 (08 Marks)
- 6 a. How are power amplifier classified? Explain. Show that the transformer coupled class A amplifier has a maximum efficiency of 50%. (08 Marks)
 - b. With circuit diagram, explain the working of class B push pull amplifier. Obtain an expression for the maximum conversion efficiency. (07 Marks)
 - c. What is harmonic distortion? A transistor supplies 0.85 Watts to a 4kΩ load. The zero signal d.c. collector current is 31 mA and the d.c. collector current with signal is 34 mA. Determine the percentage second harmonic distortion.
- a. State Barkhausen criteria for sustained oscillations and apply this to R.C phase shift oscillator and explain. Write the expression for the frequency of oscillation. Design the R.C. elements of a weinbridge oscillator for operation at f₀ = 10kHz. (08 Marks)
 - b. With the help of a circuit diagram, explain the working of Hartely oscillator. A colpitt's oscillator is to generate a frequency of 800 kHz. The capacitors to be used to have capacitance $C_1 = 100 \, \text{pF}$ and $C_2 = 10 \, \text{pF}$. Find the value of inductance. (06 Marks)
 - c. What is frequency stability in oscillators? What factors affect the frequency stability? Explain how crystal oscillator provides good frequency stability. (06 Marks)
- 8 a. What is a JFET and how does it differ from BJT? Explain the different methods of biasing FET. (07 Marks)
 - b. Explain the operation of JFET amplifier. Draw the FET small signal model. Calculate the transconductance g_m of a JFET having values of I_{DSS} = 12 mA and V_p = -4V at bias points i) V_{GS} = oV; ii) V_{GS} = -1.5V.
 - c. Draw a diagram showing the constructional features of a MOSFET. From the diagram explain in brief how the voltage at the gate controls the flow of carriers. A depletion MOSFET has $I_{DSS} = 12$ mA and $V_P = -4.5$ V. Calculate the drain current at gate source voltages of i) OV; ii) -2V; iii) -3V.